

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Informática e Estatística Programa de Pós-Graduação em Ciência da Computação

PROGRAMA DE ENSINO

1) Identificação

Disciplina: INE410132 - Arquitetura de Computadores

Carga horária: 60 horas (4 créditos)
Professor: Luiz Cláudio Villar dos Santos
Período: 2º semestre de 2018 à data atual

2) Cursos: mestrado e doutorado

3) Requisitos: Organização de Computadores (INE 5411 ou similar)

4) Ementa: Princípios de conjuntos de instruções. Projeto de hierarquia de memória. Paralelismo entre instruções. Paralelismo entre *threads*.

5) Objetivos

Geral:

o Apresentar os princípios quantitativos do projeto de computadores e aplicá-los especialmente ao projeto de processadores e ao projeto da hierarquia e memória.

Específicos:

- o Revisar os princípios de projeto de conjuntos de instruções, sua classificação, sua codificação e o papel do compilador na seleção e escalonamento de instruções.
- o Revisar os principais conceitos de hierarquia de memória, apresentar as tecnologias utilizadas em sua implementação e as principais técnicas de otimização de caches.
- o Apresentar técnicas de exploração de paralelismo entre instruções (instruction-level parallelism).
- o Apresentar técnicas de suporte à exploração de paralelismo entre threads (thread-level parallelism).

6) Conteúdo Programático:

- PRINCÍPIOS DE CONJUNTOS DE INSTRUÇÕES [12 horas-aula]
 - Classificação de conjuntos de instruções
 - Endereçamento de memória, tipo e tamanho de operandos
 - Tipos de instruções e sua codificação
 - O papel do compilador
- PROJETO DE HIERARQUIA DE MEMÓRIA [12 horas-aula]
 - Conceitos básicos
 - Tecnologias de implementação de memória
 - Técnicas de otimização de caches
- PARALELISMO ENTRE INSTRUÇÕES [24 horas-aula]
 - Conceitos básicos e desafios
 - Técnicas de compilação básicas para expor paralelismo
 - Previsão de desvios para reduzir o custo de *hazards* de controle
 - Escalonamento dinâmico para contornar *hazards* de dados

- Especulação baseada em hardware
- Exploração de paralelismo com emissão múltipla e escalonamento estático
- Exploração de paralelismo com emissão múltipla, escalonamento dinâmico e especulação
- Técnicas avançadas para entrega e especulação
- o PARALELISMO ENTRE THREADS [24 horas-aula]
 - Memória compartilhada centralizada
 - Memória compartilhada distribuída
 - Protocolos de coerência de cache
 - Mecanismos básicos de sincronização
 - Modelos de consistência de memória

7) Bibliografia Básica:

John L. Hennessy and David A. Patterson, "Computer Architeture: A Quantitative Approach", sixth edition, Morgan Kaufmann Publishers, 2018. (ISBN: 978-0-12-811905-1)

8) Bibliografia Complementar:

 David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", fifth edition, Morgan Kaufmann Publishers, 2014. (ISBN: 978-0-12-407726-3)